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Abstract- Retinal image plays a major role in ocular fundus operations and detection of diabetes in early stages. In this paper a 
new algorithm to detect the blood vessels effectively has been proposed. The initial enhancement of the image is carried out using 
pre-processing stage, followed by curvelet Transforms that are applied to the equalized image. This enhanced image is used for 
the extraction of the blood vessels. The estimation of exudates are obtained from blood vessels and optic disc extracted image. 
The results shows the enhanced retinal images of blood vessels have a better PSNR and area shows the exudates severity. 
Index Terms: Diabetic retinopathy, Blood vessels segmentation, curve-let transform, Morphological operators and retinal image. 
 

I. INTRODUCTION 
 
Retinal images play a major role in the ocular fundus operations and detection of diabetes in early stages (by comparing 
the states of retinal blood vessels and optic disc). The present work developed a system to identify patients with 
proliferate diabetic retinopathy (PDR) from the retina. The different diabetic retinopathy diseases that are of interest 
include red spots, microaneurysm, neovascularisation and exudates are fall between BDR and PDR stages of the 
disease. To detect the PDR, blood vessels of the fundus image are removed by curvelet transform and morphological 
erosion and dilation process. Then optics disc in the image are removed by using circular fitting method and blood 
vessels are separated by using canny edge detection. Finally remaining portion of image are referred to as exudates 
region.  

II. METHODOLOGY 
 
The images are pre- processed to correct the uneven illumination problem, nonsufficient contrast between exudates and 
image background pixels and presence of noise in the input fundus image. The block diagram of the sub sections that 
constitute the Pre- Processing stage (PPS) as shown in Figure.1. Median filtering operation replaces a pixel by the 
median of all pixels in the neighbourhood of small sliding window. It gives better results than the neighbourhood 
averaging (noise is impulsive). Median filter is robust and has the capability to filter only outliers. It is an excellent 
choice for the removal of salt and pepper noise and horizontal scanning artefacts.  Adaptive histogram equalization 
(AHE) is suitable for improving the local contrast of an image and bringing out more detail. However, it has a tendency 
to over amplify noise in relatively homogeneous regions of an image. A variant of adaptive histogram equalization 
called contrast limited adaptive histogram equalization (CLAHE) prevents this by limiting the amplification. 

 
Figure.1 Overview f Retinopathy detection system 
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where x is the curvelet coefficient, 0 < p < 1 determines the degree of nonlinearity.k1, k2 and k3 are assigned weights 
to each function part to allow us to control the modification of coefficients. Due to the assigned weights, it is possible 
to indicate how much the coefficients became magnified or reduced or even be unchanged. The adjustment parameter 
makes it possible to determine and regulate the coefficients modification interval. Parameters c and m are involved in 
determining the coefficients modification interval as well as the amplitude of corresponding multiplying y. These 
parameters are defined according to two statistical features of coefficients. The first one is the noise standard deviation, 
with the aim of preventing the noise amplification, and the second one is the maximum value of coefficients in each 
band. We choose c = σji, where σj iis the noise standard deviation of coefficients being in the same direction and same 
scale. m can be derived from maximum curvelet coefficients of the relative and MC (m = kMC). k is an additional and 
independent parameter from the curvelet coefficient values, and therefore, much easier for a user to set. The assigned 
weights and adjustment parameter are experimentally tuned based on intrinsic characteristics of the input image. 
Curvelet transform is well adopted to represent the image containing edges and is good for edge enhancement.  
 

 
Figure.4 Images of a) Histogram equalization b) Curvelet transform 

 
III. MORPHOLOGICAL APPROACH 

 
The value of each pixel in the output image is based on a comparison of the corresponding pixel in the input image with 
its neighbors. Dilation adds pixels to the boundaries of objects in an image, while erosion removes pixels on object 
boundaries. The number of pixels added or removed from the objects in an image depends on the size and shape of the 
structuring element used to process the image. In the morphological dilation and erosion operations, the state of any 
given pixel in the output image is determined by applying a rule to the corresponding pixel and its neighbors in the 
input image. Dilation finds local maxima in binary or intensity images. A structuring element is a matrix consisting of 
only 0's and 1's that can have any arbitrary shape and size. The pixels with values of 1 define the neighborhood. Two-
dimensional, or flat, structuring elements are typically much smaller than the image being processed. The center pixel 
of the structuring element, called the origin, identifies the pixel of interest, the pixel being processed. The pixels in the 
structuring element containing 1's define the neighbourhood of the structuring element. These pixels are also 
considered in dilation or erosion processing. Three- dimensional, or non flat, structuring elements use 0's and 1's to 
define the extent of the structuring element in the x- and y-planes and add height values to define the third dimension. 
In order to calculate the Hough Transform, the edge of the OD’s circular shape is needed. Canny Edge detection 
operator is applied to the image as a first step in this process. This removes most of the noise due to its fine texture 
leaving only the required edges of the OD. It can be used for representing objects as 
 

                                             (x-a)2+ (y-b)2 = r2                                                (3) 
 

Where (a,b) is the coordinate of center of the circle that passes through (x,y) and r is its radius. From this equation, it 
can be seen that three parameters are used to formalize a circle which means that Hough space will be 3D space for this 
case. For the rough calculation of OD, the accumulator parameter array is filled where each array is composed of cells 
for (x,y) coordinates of the center of circle. The edge image is scanned and all the points in this space are mapped to 
Hough space. A value in particular point in Hough space is accumulated if there is a corresponding point in the retinal 
image space. The process is repeated until all the points in the retinal image space are processed. The resulting image is 
scaled between 0 and 1. Then it was threshold to leave only those points with high probability of being the centres 
which are then labeled with different numbers. Afterwards the different regions were matched by different circles and 
the output image is computed by drawing circle with these points and adding this to the input image. Then numbers of 
pixels which are in the vicinity of detected circle’s edge are counted. A mask of a ring shaped is put on the binary edge 
image on the same location of each of the detected circle. Number of edge pixels under this mask will be counted and 
compared for all the detected circles. The best circle shows the location of the detected optic disc. 
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IV. CANNY EDGE DETECTOR 
 

The Canny Edge Detector works in a multi-stage process. First of all the image is smoothed by Gaussian convolution. 
Then a simple 2-D first derivative operator is applied to the smoothed image to highlight regions of the image with high 
first spatial derivatives. Edges give rise to ridges in the gradient magnitude image. The algorithm then tracks along the 
top of these ridges and sets to zero all pixels that are not actually on the ridge top so as to give a thin line in the output, 
a process known as non-maximal suppression. The tracking process exhibits hysteresis controlled by two thresholds: 
T1 and T2, with T1 > T2. Tracking can only begin at a point on a ridge higher than T1. Tracking then continues in both 
directions out from that point until the height of the ridge falls below T2. This hysteresis helps to ensure that noisy 
edges are not broken up into multiple edge fragments. The Sobel operator performs a 2-D spatial gradient measurement 
on an image. Then, the approximate absolute gradient magnitude at each point can be found. The Sobel operator uses a 
pair of 3x3 convolution masks, one estimating the gradient in the x-direction (columns) and the other estimating the 
gradient in the y-direction (rows). They are shown below:  
 

 
Figure.5 Convolution Masks 

 
The magnitude, or edge strength, of the gradient is then approximated using the formula: |G| = |Gx| + |Gy| 
Edge tracking is implemented by BLOB-analysis (Binary Large Object). The edge pixels are divided into connected 
BLOB’s using 8-connected neighbourhood. BLOB’s containing at least one strong edge pixel is then preserved, while 
other BLOB’s are suppressed. After eliminating the blood vessels and optic disc remaining image are refer as a 
exudates located image and exudates obtained area is calculated. By using this exudates area we can show the 
difference between severities of disease.    

 
V. RESULT AND ANALYSIS 

 
The retinal image edge enhancement and contrast was improved using curvelet transform and prepared better for 
segmentation, blood vessels are removed by using morphological dilation and erosion process and optic disc are 
masked by using circular fitting method. Then finally remaining image are refer as a exudates located image. By using 
this approach we can detect the exudates accurately for differentiating diseased persons from the normal persons. The 
Table.1 shows the Enhancement Analysis and Area Obtained. The Figure.6 show the input Image and its Adaptive 
histogram equlaization that is followed by Enhanced Image. Also the Figure 7 shows the image of an Morpological 
erode, Blood vessels and Exudates located color. 
 

Table.1 Enhancement Analysis and Area Obtained 
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Figure.6 Image of a) Input b) Adaptive histogram equlaization c) Enhanced Image 

 

 
Figure 7 Image of a) Morpological erode b) Blood vessels c) Exudates located color 
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